Relative Kolmogorov complexity and geometry
نویسنده
چکیده
We use the connection of Hausdorff dimension and Kolmogorov complexity to describe a geometry on the Cantor set including concepts of angle, projections and scalar multiplication. A question related to compressibility is addressed using these geometrical ideas.
منابع مشابه
Decomposition of Kolmogorov Complexity And Link To Geometry
A link between Kolmogorov Complexity and geometry is uncovered. A similar concept of projection and vector decomposition is described for Kolmogorov Complexity. By using a simple approximation to the Kolmogorov Complexity, coded in Mathematica, the derived formulas are tested and used to study the geometry of Light Cone.
متن کاملKolmogorov complexity and the geometry of Brownian motion
In this paper, we continue the study of the geometry of Brownian motions which are encoded by Kolmogorov-Chaitin random reals (complex oscillations). We unfold Kolmogorov-Chaitin complexity in the context of Brownian motion and specifically to phenomena emerging from the random geometric patterns generated by a Brownian motion.
متن کاملAn Oracle Strongly Separating Deterministic Time from Nondeterministic Time, via Kolmogorov Complexity
Hartmanis used Kolmogorov complexity to provide an alternate proof of the classical result of Baker, Gill, and Solovay that there is an oracle relative to which P is not NP. We refine the technique to strengthen the result, constructing an oracle relative to which a conjecture of Lipton is false.
متن کاملA Tight Upper Bound on Kolmogorov
The present paper links the concepts of Kolmogorov complexity (in Complexity theory) and Hausdorr dimension (in Fractal geometry) for a class of recursive (computable) !-languages. It is shown that the complexity of an innnite string contained in a 2-deenable set of strings is upper bounded by the Hausdorr dimension of this set and that this upper bound is tight. Moreover, we show that there ar...
متن کاملIs Randomness "Native" to Computer Science?
1 From probability theory to Kolmogorov complexity 3 1.1 Randomness and Probability theory . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Intuition of finite random strings and Berry’s paradox . . . . . . . . . . . . 5 1.3 Kolmogorov complexity relative to a function . . . . . . . . . . . . . . . . . 6 1.4 Why binary programs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Log.
دوره 76 شماره
صفحات -
تاریخ انتشار 2011